Dehumidifier Consorb
CZ 82, 102, 102L, 104

Dehumidifying capacity at 20°C / 60%RH
22.0 - 65.0 kg/h
Dry air flow
3,200 - 8,000 m³/h

- Washable rotor
- Long lifetime
- No desiccant carry-over
- Suitable for high ambient humidities
- Excellent deep drying ability
- Option:
 - Hot-water coil for regeneration air pre-heating
 - Process fan equipped with frequency converter

Section of a dehumidifier rotor from Seibu Giken. The high number of channels means that moisture is adsorbed with extra efficiency.

World leaders in dehumidification.
TECHNICAL DATA

<table>
<thead>
<tr>
<th>Dehumidifier model</th>
<th>CZ-82</th>
<th>CZ-102</th>
<th>CZ-102L</th>
<th>CZ-104</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal capacity 1 (kg/h)</td>
<td>22</td>
<td>36</td>
<td>50</td>
<td>65</td>
</tr>
<tr>
<td>Dry air flow 2 (m³/h)</td>
<td>3200</td>
<td>5200</td>
<td>7200</td>
<td>8000</td>
</tr>
<tr>
<td>External static pressure (Pa)</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Wet air flow 2 (m³/h)</td>
<td>850</td>
<td>1400</td>
<td>2000</td>
<td>2500</td>
</tr>
<tr>
<td>External static pressure (Pa)</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Heater power 3 (kW)</td>
<td>30</td>
<td>50</td>
<td>74</td>
<td>95</td>
</tr>
<tr>
<td>Max. electric consumption (kW)</td>
<td>34.1</td>
<td>54.5</td>
<td>81.7</td>
<td>106.5</td>
</tr>
<tr>
<td>Supply fuse 3x400V 50Hz (A)</td>
<td>63</td>
<td>100</td>
<td>160</td>
<td>200</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>300</td>
<td>380</td>
<td>400</td>
<td>560</td>
</tr>
</tbody>
</table>

1 Valid for inlet conditions 20°C/60%RH. For other inlet conditions the capacity can be calculated by using the diagram shown below.
2 Volume flow for density 1.20 kg/m³.
3 Electric reactivation heater is standard. Steam and hot water is optional.

CORRECTION DIAGRAM

Subject to change without notice. Download installation drawing at www.dst-sg.com

DIMENSIONS

The temperature of the dry air at nominal air flows is calculated by:
\[t_{out} = t_{in} + (K \times 14) + 5 \]

The dehumidifying capacity is estimated as the nominal capacity from above, multiplied by factor \(K \) from the correction diagram.